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Trimming the Least Squares Estimator in the Linear Model By
Us ing a Prelim inary Estimator

by

David Ruppert* and Raymond J. Carroll**

Abstract

Let be an estimate of j3 in the linear model , Y1 = x!~ + e1. Define the

residuals Y~ - x ’ ~~~~~~, let 0 < a < ½, and let be the least squares estimate of

~ calculated after removing the observations with the [an] 
smallest and [an ]

largest residuals. By use of an asymptotic expansion, the limit distribution of

is found under certain regularity conditions . This distribution depends

heavily upon the choice of ~~~~~~. We discuss several choices of ~~~~~, with special

attention to the contaminated normal model . If  is the median regression or

least squares estimator then is rather inefficient at the normal model. If F is

symmetric , then a particularly convenien t, robust choice is to let ~~ equal the

average of the czth and (l-cL)th regression quantiles (Koenker and Bassett,

Econometrica (1978)). Then has a limit distribution analogous to the trimmed

mean in the location model , and the covariance matrix of .L is ~asi1y estimated.
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1. Introduction. This paper is concerned with the linear model

(1 .1) = X~ +

where y ’ = 
~~

1’••.’
~ N~ ’ 

X is a Nxp matrix of known constant, ~~~
‘ = (13

~
I...

~~ P
)

is a vec tor of unknown parameters , and z’ = (z l,...,zN) is a vector of i.i.d.

random variables with distribution function F. The least squares estimator of

~ is said to be non-robust because it possesses two serious disadvantages,

inefficiency when F has heavier tails than the Gaussian distribution and high

sens itivity to spurious observations . These deficiencies are closely related

and Huber (1977, p. 3) states that “for most practical purposes, ‘distributional

robust’ and ‘outlier resistant ’ arc interchangeable ”. In the location model,

three classes of estimators have been proposed to overcome these deficiencies:

M, L, and R estimators ; see Eluber (1977) for an introduction . Among the

L-estimates, the trimmed mean is particularly attractive because it is easy to

compute, is rather efficient under a variety of circumstances , and can be used to

form confidence intervals (Gross (1976) and Huber (1970)). Hogg (1974) favors

trimmed means for the above reasons , and because they can serve as a basis for

adaptive estimators . Stigler (1977) applied robust estimators to historical data

and concluded that “the 10% trimmed mean (the smallest nonzero trimming percentage

included in the study) emerges as the recommended estimator”. It is therefore

natural to seek a trimmed least squares estimator for the general linear model

which possess these desirable properties of the trimmed mean .

For the linear model, Bickel (1973) has proposed a class of one-step

L-estimators depending on a preliminary estimate of ~3, but, while these have good

asymptotic efficiencies, they are computationally complex and are generally not

invariant to reparameterization . 

..~ ~~~~ .
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Recently, Koenker and Bassett (1978) have extended the concept of quantiles

to the general linear model. They suggest the following trimmed least squares

estimator, 
~.KB

(a)(= 
~~~~ 

define the ctth and (l-ct)th regression quantiles ~(c)

and ~(l-a) (see their paper for a definition of regression quantile), remove from

the sample any observation whose residua l from ~(a) is negative or whose residual

from ~(l-a) is positive, and calculate the least squares estimator using the

remaining observations. In the location model , this estimator reduces to the

a-trimmed mean. Ruppert and Carroll (1978) studied the large sample behavior of

-~KB (p f ixed and N -~ 00) and found that the variance of N~ ~KB (a) is
2 — 1 -l . . 2

approximately a (ct,F) (N X ’X )  , where in the location model a (ct,F) is the

asymptotic variance under F of the a-trimmed mean (also normalized by N1) .

.—~~In this paper w inve~tigä~~ a class of estimators,~that fIpresent a third

possible method of defining a regression analogue of the trimmed mean. Specifi-

cally, let be a preliminary estimator. Form the residuals from ~~ ~~~ çemove

from the sample those observations corresponding to the [Na] smallest and [Nct]

largest residuals. Then the ct-trimmed least squares estimator,

~~ (a) (= ~~), is a least squares estimator using the remaining observations.

The definition of was motivated by the applied statisticians ’ practice of

examining the residuals from a least squares fit, removing the points with large

(absolute) residuals , and recalculating the least squares solution with the

remaining observations. Generally, there is no formal rule for deciding which points

to remove, but is at least similar to this practice . Furthermore, the authors

do know of practitioners who have used

Theorems 1 and 2, which are a general results allowing a wide class of prelim-

inary estimates , give asymptotic representations for ~~~~~~. These representation

enables one to calculate the asymptotic bias (which is 0 if F is symmetric and

is unbiased) and variance of
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When the preliminary estimate is the least squares or median regression (L1)

estimate, two somewhat surprising conclusions emerge. First, for neither choice

is a multivariate analogue to a trimmed mean. Second, either choice causes

to be inefficient at the normal model, particularly when compared to the Koenker

and Bassett estimate or the M-estimates. For symmetric F, we show that the “right”

choice of a preliminary estimate is a regression analogue to averaging the ~
th and

(l_ct)th sample quantiles .

Hogg (1974 , p. 917) mentions that adaptive estimators can be constructed from

estimators simi lar or identical to ~~(a) with a a function of the residuals from

The advantage of this class of adaptive ‘stimators , he feels, is that they

“would correspond more to the trimmed means for which we can find an error struc-

ture”. However, from the above resu lts, we can conclude , that even if a is

non-stochastic, estimators of the type suggested by Hogg will not necessarily have

error structures wh ich correspond to the trimmed mean.

The methods of this paper can be applied to estimators similar to ~~~~~~. For

example , let ~~(a)(= ~~
) be the least squares estimate after the points with the

[2ctN ] largest absolute residulas from are removed. In section 6 we state results

for ~~~~~~. Their proofs are omitted, but are similar to the proofs of analogous resul ts

for

2. Notation and Assumptions. Although ~, X and z in (1.1) depend upon N,

this will not be made explicit in the notation . Let e’ = (1,0,.. .,O) (l xp) and let

Ii., be the pxp identity matrix. For 0 < p < 1, define = F~~ (p) .

Throughout, we will make the following three assumptions .

Cl. N 2 (~~
_
~3) = 0 (1)

C2. Fix 0 < a < 1, and def ine = and 
~2 

=

Assume F has a continuous positive density f in neighborhoods of and

C3. Assume X11 = l f o r i = l . . . , N,
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(2.1) lim [N 1 max IX~~f I = 0
1�N ,3�p

N
(2.2) ~ X~ . = 0 for j = 2,. ..,p ,

i=l

i.e. , the desi gn is centered, and for Q some positive defin ite matrix

(2. 3) lim N 1 X ’X = Q.
N-~

o

Note taht the probabil ity distribution of Y is unchanged if we rep lace ~ by

+ Oe and F( . )  by F(. + 0) where 0 is any real number. Because of (2.2), many

possible preliminary estimates , ~~, satisfy

N1(~~ - - Oe) = 0 (1)

for some 0. In particular , the LAD (least absolute deviation or median regression)

estimate has this property (Ruppert and Carroll (1978)). In this case, we can

reparameterize so that Cl holds.

The residuals from the preliminary estimate are

(2.4) r~ = y~ 
- xj t3 = z~ - ~~~~ -

Let r lN and r 2N be the [Nct]th and [N(l-a)]th ordered residuals, respectively . Then

the estimate is a least squares (LS) estimate calculated af ter removing all

observations satisfying

(2.5) r. 
~~. 
rlN or r. > r2N

Because of C2 , asymptotic resuhs are unaffected by requiring strict inequalities

in (2.5). Let a1 = 0 or 1 according as i satisfies (2.1) or not, and let A be the

NxN diagonal matrix with A.. = a.. Thus
11 1
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~~ (a) = (X’AX) X’AZ,

where (X’AX) is a generalized inverse for X’AX. (Later we show that

N~~ (X ’AX) ~ (l- 2ci)Q, whence P(X’AX is invertible) 
-~ 1.)

3. Main Results. The analysis of the asymptotic behavior of 
~L

(a) relies

heavily on techniques developed by Ruppert and Carroll (1978). The proofs are

sketched in the append ix. Lemma 1, which may be of some interest in intself, is

an asymptotic linearity result and is a generalization of work by Bahadur (1966)

and Ghosh (1971) for the location model.

For 0 < 0 < 1, def ine

(3.1) ip
0

(x) = 0 - I (x < 0)

Lemma 1. For 0 = ci or (1-ct), let rON be the fNO]th ordered residual. Then,

(3.2) N½ (r ON~~O) = f (~~
0

)~~~~[N ~~
2 

i~ l ~~~~~~~~ e~ N
1(~~-~) + o (l)

Theorem 1. Define a = ~2
f(~ 2) - ~l 

f (~~1),  
~~~~, 

= (I_e ’e)x
~ 

= ~~~~~~~~~~~~~~~

and

(3.3) h(x) = xI (
~~ 

< X 
~~ ~~~ 

+ 

~~~~~ 
> 

~~~ 
- a) + ~1 ( I (x  < ~

) - ci)

Then,

(3.4) (1-2ct)N~(~~-~) = N~~
2 

~ 
Q~~ 

C. z. I (~~ < Z i  
~~

+ N 2  
~ 
!h(Z1) + a N1 (‘-!!‘)(~ 

- 8) + o (1) .
i=l — p

For our next theorem we require another condition .

C4. For some function g,

N1 (h-B) = N 1 

i~ 1 ~~~ x1 g(z 1) + o~ (l) .

t I’
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As is well-known, C4 holds with g(x) = x if is the LS estimate. By

Ruppert and Carroll (1978) , Theorem 2), C4 holds with

g(x) = (f(F~~(O))Y
1
(½ - I(x < F 1(0))) if is the LAD estimate. As a conse-

quence of Theorem 1, we have our main result.

Theorem 2. Assume C4. Then

(3.5) (1-2ct) N1(~~-~ ) = N 1 
~ Q 1 C~~{Z~ I(E

1 < I 
~~~ 

+ a g(Z~ ) }
i= 1

+ N 2 
~ e h ( Z . )  + o ( 1) .

i=l p

As a special case of corol lary 1, we obtain a result of deWet and Venter

(1974) .

Corollary 1. In the location model (p=l and x1=l for all i)

(l-2ci) N1~~~-~ ) = 2 h(Z.) + o~(l).

4. Asymptotics. In this section we show the Theorem 2 leads to the basic

conclusions ;

1) The intercept estimate is asymptotically unbiased if F is symmetric.

2) The slope estimates are asymptotically unbiased even if F is asymmetric .

3) The asymptotic variance of the intercept, which does not depend upon the

choice of ~~ is that of the trimmed mean in the location model.

4) The asymptotic covariance matrix of the slopes depends upon 
~~ 

and, in

general , will be difficult to estimate.

Let 0 be a (p-l) x 1 vector of zeroes. By (2.2), there is a Q such that

1 0,1 1 0’
(4.1) = : I and Q~ 

= :
9 Q J
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Moreover,

N r o o’
(4.2) N 1 

~ C. C! =

i=l 
[
0 Q

and

N 0
(4.3) Q N 1 

~
i=1 0

We will call the first entry of ~ the intercept and the remaining entries will

be call the slopes. If we estimate 13 with ~~, then the asymptotic bias of the

intercept is

E h(Z 1) = (l-2a)~~ f ~. x dF(x) ,
‘1

which is zero if F is symmetric about zero. By (3.4) and (4.3) the slope estimates

are asymptotically unbiased, even if F is asymmetric. The asymptotic variance of

the intercept, normalized by N1, is

(4.4) a2(ct,F) = (l-2c&Y 2 Var h(Z.)

the asymptotic variance of the normalized a-trimmed in the location model. The

intercept is asymptotically uncorrelated with the slopes, and the asymptotic

covariance matrix of the normalized slopes is Q~~ 
o
2
(ct,g,F) where

(4.5) a2(ct,g,F) = (l-2ctY 2 Var(Z 1 I(~~ < 
~~ ~~~ 

+ a g(Z 1
)) -

We see that the asymptotic distribution of the intercept estimate does not depend

upon the choice of ~~ provided (
~~

-
~

) = O~~(N~~~) .

On the other hand, we see from (3.4) that the slope estimates depend upon

since the unusual situation where a = 0 is ruled out by assumption C2. Using the

Lindeberg central limit theorem and corollary 1, it is easy to show that under C4 ,

N2 (
~~ - B - ! (1-2ct~~

’ Eh(Z
1
)) converges in distribution to a normal law .
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In general, large sample statistical inference based on will be a

challenging problem, because of the diff iculties of est imating

a = 
~~~ ~~~~~ 

- 
~l 

f ( E 1) ) .  Obtaining reasonably good estimates of the density

f might take very large sample sizes .

5. A Close Analog to the Trimmed Mean. There is one choice of (the average

of the ~th and (l_c*)th “regress ion quantiles”) for which the asymptotic covariance

matrix of is relatively simple to estimate when F is symmetric about 0. For

O < 0 < 1, let ~(0) be the 0 the regression quantile (Koenker and Bassett (1978)).

Let ~(O) = F~~(0) and define t~0
(x) = 0 - I(x < 0). By theorem 2 of Ruppert and

Carroll (1978), if F has a contiruous positive density f in a neighborhood of ~(O) , then

(5.1) N ½ (~~(O) - B - ~(O)e) = N~~ (f (~(o)~~
1 
~~~ ~i ~ü~~i 

- ~
(0)) + o (l)

Let ~~(RQ) equal ~~ when = (~ (a) + ~(l-a))/2. By C2 and (5.1) this

satisfies (C4) with

g(x) = (2 f(~~1
))~~

1 

~~
(x
~~l
) + (2 

~~~~~~~~ ~l-a~~~~ 2~

If F is symmetric, then 
~l 

= 
~~2’ f(~~1) = f(~2), and therefore

(5.2) a g(x) = I(x -
~ ~~~ 

+ 
~2 I(x >

By (3.5) and (5.2),

(5.3) (l-2ct) N
1
~ ~- L - ~ 

= N 1 

i~ l 
~~~

1 
X •  h(Z.) + o (l)

and therefore by (4.4),

N1(~~-B) ~ N(0, Q~
1 
a
2
(ct,F))

1-4’ ~~.L V ’
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If we examine deWet and Venter ’s (1974) representation of the trimmed mean (cf.

corollary 1 of this paper) , we see that (5.3) is a generalization of their result

to the general linear model. Therefore, this ~~ appears to be the “correct” choice.

Also by theorem 3 of Ruppert and Carroll (1978)

(5.4) N1(~~~8~~~~
) ~ 0

so that asymptotically there is no difference between trimmed with this preliminary

estimate and using Koenker and Bassett’s (1978) proposal. (However , (5.4) does

not necessarily hold if F is asymmetric.)

Let ~~~LS) and ~.L
( LAD) be when is the LAD and LS estimate, respectively.

Tabl e 1 displays o2(ci,g,F) for several choices of ci, c, and b , and for g corre-

sponding to ~~ (LS) , ~~ (LAD) , and !L(RQ). For comparison purposes, we include the

asymptotic variance of the LS es timate, Huber’s proposal 2 M-estimate, and a

4 one-step Hampel estimate using }luber ’s proposal 2 as a preliminary estimate (Huber’s

(1973), (1977)). (By asymptotic variance, we mean cr2 where the asymptotic covari-

ance is ~
2 
~~~~ 

For discussion of the last two estimates see Carroll and Ruppert

(1979). Several conclusions emerge from Table 1.

1) ~~ (LS) and ~(LAD) are rather inefficient at the normal distribution .
2) ~~(RQ) is quite efficient at the normal model .

3) Under heavy contamination (b large or c large) 
~.L

(LS) , ~(LAD) , and &(RQ)
are relatively efficeint compared with LS. Also ~~(RQ) and &(LAD) compare

well against the M-estimates, but ~~ (LS) does poorly compared to the
M-estimates if c = .25 , b = 10, and ci = .25. (Intuitively, one can expect
that when ci = .25 , ~~~LS) will be heavily influenced by its preliminary
estimate, which estimates ~ poorly for these b and c.)

Because of 1) and 3), the practice of fitting by least squares or LAD, removing

points corresponding to extreme residuals , and computing the least squares estimate

from the trimmed sample, is not an adequate substitute for robust methods of estimation . 

— .____—#_,,r.
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If , instead of removing those observations with the [Nd smallest and [Na]

largest residuals from ~~, we remove those observations with the [2Nd largest

absolute res iduals , then the asymptotic variance of the intercept is the same as

that of the slopes. Specially, let !~
(a)(= ~~

) be the estimate formed in this

manner. Then, if F is symmetric,

(6.1) ( l-2a)N 2 (~~ -13) = N~~ 
i~ l ~~~ 

x.{Z. “~ l ~ ~i ~ ~~ 
+ a(~~ -B) }

and if C4 holds , then

(6.2) (1-2ct)N 2 (h- B) = N 2 2 Q~
1 xj Z .  

~~~~ 
< Z~ I ~~ 

+ a g(Z~ ) }

which in the location case reduces to

N
(6.3) (1-2ci)N2 (s- B) = N 2 

~ {Z~ I{
~ l 

< Z~ -~ ~~~ 
+ a

i=l

The proofs are simi lar to those of theorems I and 2 and are omitted.

Since is par ticularly easy to compute in the location model , it is very

suitable for Monte Carlo studies. It is hoped that such studies will indicate

the degree of agreement between the asymptotic and finite sample variances of

as well  as ~~~~~~. Table 2 displays the variance of ~~ (LS) , i.e. with the

LS estimate, for sample sizes of N = 50,100,200,300, and 400. The Monte-Carlo

swindle (Gross (1973)) was employed as a variance reduction technique. One

sees from this table that convergence of the variance to its asymptotic value can

be extremely slow for some distributions, e.g. b = 10 and c = .10 or .25.

7. Conclusions. Despite their intuitive appeal, trimmed regress ion estimates

based on an arbitrary preliminary estimate will not be very satisfactory. However,

provided the error distribution is symmetric, there is one such estimate that is

closely analogous to the trimmed mean in the location model.
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Appendix

Prop~~ition A.l. For 0 = a or (l-2a) let be a sequence of solutions to

N

~ (r~-~~ ) i~i0(r~-~.~) = m m .
i=l

Then,

N~~ j
~ l 

~0
(r.-~~) = o (l).

Proof. The argument is very similar to that of theorem 1 of Ruppert and

Carroll (1978) and will be omitted.

Proof of lemma 1. As pointed out by Koenker and Bassett (1978), p = rON
is a solution to

(r~-ii) iL~0
(r~-u) = mm

so that by Proposition A.l, for 0 = a or (1-ct) ,

(Al) N 1 

i~l 
~0
(Z. - - x.(N1 (~~~

-
~~

) + e(r 0N~~ Q)) = o (l)

Here, we use the fact that x !e = 1. Define the processes

V
N(~

) = N 1 
~0
(Z. - - x !

and

W
N
(t
~
) = VN

(A) - V
N

(O) - E(V
N(~

) - V
N

(O)).

Following Bickel (1975) or as a special case of Lemma A2 of Ruppert and Carroll

(1978), for all M > 0 ,

(A2) sup IWN (t
~
) I = ° (1)

0� II A II �M . p

and

~~~~~~~~~~~~~~~ ~~~~~~~~~~~ -
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(A3) sup IVN
(A) - VN (0) + f ( E  ) e’AI = o (1)

ci

Further, following the method of Jurecková (1977) or Lemma A.3 of Ruppert and

Carroll (1978), for all c > 0 there exists r~, K, and N
0 such that

(A4) P{ inf V
N

(A) I < r~
} < c } for N > N0I I A I I > K

By (Al) and (A4) we have that

(AS) N1 {(~~ -B)  + e(r ON - = O~~(l)

so by substituting the RI-IS of (AS) for A in (A3) we obtain by (Al) that

N
(A6) N 2 

~~ ~0 (Z~
_
~ 0) - f (~ 0) e ’ N~~~(~~ -B) + !(r ON

_
~ O

)} = o (l) . 0
1=1

Proposition A.2 .  (Lemma A.4 of Ruppert and Carroll (1978)). Let

D I N ( D m )  be a rxc matrix who:e (9. ,k) th  component is denoted by Dj~k . Suppose

u r n  N 1 2 D
~2,k 

exists for all 2~ and k .

Let h(x) be a function defined for all real x that is Lipschitz continuous on an

open interval containing 
~ 

and 
~~ 

For A1, A2, and A3 in R~ and A = (A 1, A2, A3),

define

N
T(A) = N 2 D. h(Z, + X ! A3/N 1) I {

~ i + X ’ A1/N 2 
I Z~ -~ ~2 + 

~I A2/N~ }
1=1

Def ine

S(A) = T(A) - 1(0) - E(T(A) - T(0)) .

Then, for all M > 0,

sup IIS(A )II = o (1) .p
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Proof of theorem 1. For A1, A2 
in R~ and A = (A1, A2) ,  define

U(A ) = N 1 

j~~1 
~~ ~~ “~ l 

+ x~ A1/N1 
~ ~i -~ ~2 + X~ A2/N 11

and

N
W( A ) = N 2 

~ x. z. + x ’ A1/N 1 Z~ < 
~2 + X•  A2/N1)

i=1 
—

Using Proposition A .2 , it is easy to show (cf. Ruppert and Carroll (1978), proof

of theorem 3) that for all M > 0 ,

(A7) sup 1U( A) - ( 1-2a)QI = ° (l)
O� II A II � M 

p

and

(A8) sup j W( A )  - W(0) - Q(A
2 ~2 

f (~ 2) - A
1 ~l 

f ( F~1)) = o (1)p

-: Then us ing the fact that x~ ! = 1, we have

I {r lN I rj I r2N} = ‘~~ l + x~i(~~-8) + !(rlN -
~ l

)) I Z~

I ~2 + ( (b-B) +

and so replacing A~ by N1((~~-B) + e(r~~-~~), for ~ = 1, 2, in (A7) and A8) , we

have

(A9) (x ’AX) = (1—2ci)Q + o (l)

and

(AlO) N 2  X’A(y-AX B) = W(0) + Q{Q f(~ 2) N½ (~~~~
-

~~~ 
+ e(r ZN-

~ 2))

- 

~~i ~~~~ 
N½ (~~~~13 .p e(rlN

-
~ l))}  .. o (].)

/ ~~~~~

.. — — a _ ~~~. — ~,-
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By (A9) and (Alo) ,

(All) (X’A(y-AX 13)) = (l-2ci) ~~~(~~~~
_
~~) 

+ o~ (l) .

By (AlO) , (All) , and (3.2)

(Al2) (l-2ci) N½ 
-~LS-~~ 

= W(0)

÷ 
~~~~ ! N 1 

~l-ci 
(z.~~2) - 

~l 
e N~~ 

i~ l ~~~~~~~~~

+ N1 a(I -e  e ’)~~~ -13) J + 0 (1)

Then (3.3) follows from (A12), (3.1), and the definition of W(O).

Proof of corollary 2. By (2.2), the f irst row of Q is e ’. Therefore , the
— 1 .  — l — lf irst  row of Q is also e. Consequently, (I-e e ’) Q x. = Q c . .  Thus ,

substituting (3.4) into (3.3) completes the proof.

H -

— - 

., ~~~~~~  

—--~ -- - - - -~~ - - - - -
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* F F F F ~ F F F F
P1 ~~ t~ ts~ — 0 0 0 Z

03 0 cu ~.n cu o o 0 VT fit C/I 0
0 .0
0) P1 ,— *P1 ~~ Cit c/i 0 cu c/i 0 VT c/~ *0. ~~~ 

. . . . . .
0. ~~ 0 0 0 0

CD 0’
< 0

—0) ~~~~~ CD
rP () VT -4 c/l 0 c/I — CIT t’~) I-’ ~~~ c CD
p~. 0 . . . . . . . . 0 3 0 3o ~ s4 C~ CQ .~~ 00 CO h) •~~~ 0 hj Cl)

~ C/i 0 0 0 0 0 c/i 0 0 0 CD ,4 I

o Cl)

14~ —. 0 0 3
< P 1

C) 03o rt C..l t4 — I-’ — — I-’ — 1 0 ~ P1
~~ 

p.. . . . . . . . . . . i’J P
~~~ 0~ 

p..

rP 0 ,~~ CO ~~ -~~ c,i ~~ C-.) ~-‘ 0 0 CD 0’ C)
~~ a’ ~~ ~~ o ~~ o a’ u j  n CD

0)
p.- — CD

0
03
rP 0 03
— . r~~ e4
0 .~~ r~ — i— i-. ‘-. I- )— CD 03 Ii

t-. a’ co a’ .~~ c~ i-.~ ~~ — o c~ X
0’ 00 I- ~4 C-.) 00 c/I -4 .~~~ r+ CD 0)

:~

— — ~~ — — — — — — — p ~ ~~~ r 03 03

~ P1 rP~~~ e-~ CD
0. (0 — 00 CO (0 00 00 00 00 ‘< O~ ~3 r~ 0VT C-.) C-.) C/i 0 c/I VT -4 00 c/I — 0 Cl) ~~ Cl) P~ P1

0 tI1~~~~~0 ‘—‘ r rP Cl)
Cl) —
rP 03~~~ (/3

c/I C-.) I’.) C-.) C-.) C-.) C-.) F.) C-) C-.) Q ~~. U)
~ CD

0 CO 00 .~~ .~~~ C/I (.1 F..) C-.) • 03 0) CD
O~ CO -I ~J .~~~ 

(0 0 00 a’ .
~~~ F.) P1

c/i CD CD 03
Cl) Cl)

~~~C D C D
C/i .

~~~ C-.) — I-. P-~ — ~~ ‘1 09 P1 0
• . . . . . . . . . . fl C D P 1 0 )

a’ ‘‘  “ 0’ .
~~~ c/I F-.) F..) 0 • P C D  QQ

Vt .~~~ VT a’ F.) Cii 0 0’ c/I 0 ~ U) CD

~~~0 H ) ItD)
C~i t-. p~. p .  p-. p-. p~ t— ,— p 0) ~~ P1 P

c/I 00 ~~ c/I c/i C-.) C-.) — 0 • ‘< .0 r~ ~OCO CO C/i C/i 00 0 C/i ~~ a’ — ~ 0
0 ~~~03

C-.) ~4 — — . — ~~
. p~. — p p.. ~~. 0.

ii ~~~ —
— 0 00 .~~ -~~ C/I c/i C/i C-.) I-~ • 03 CD I—
CO —. 0 CO VT (0 C/i — CO (0 F.) r~ Cl) I

C/l CD P
~~
. Q3 ~4



18

Table 2 - Finite and Asymptotic Variances of N1 ~~ (LS)

in the Location Model

€
~~ b~~ N*=50 N=lOO N 200 N=300 N=400

NI**=l000 NI=l000 NI=500 NI=500 NI=850 Asymptotic

NORMAL 1.31 1.36 1.37 1.32 1.35 1.36

.05 3 1.47 1.49 1.50 1.47 1.48 1.51

.05 5 1.57 1.65 1.70 1.66 1.65 1.71

.05 10 2.10 2.36 2.54 2.51 2.40 2.66

.10 3 1.58 1.58 1.65 1.63 1.60 1.64

.10 5 1.74 1.83 1.97 1.90 1.90 1.96

.10 10 2 .24 2.51 2.92 2.99 3.03 3.32

.25 3 2.01 1.93 1.94 1.96 1.96 1.97

.25 5 2.12 2.05 2 .08 2.11 2.07 2.09

.25 10 2.98 2.42 2. 14 2.13 2.11 1.88

4Propor tion of contamina tion

~~Standard deviation of contamination

*Sample size

**Number of Monte-Carlo simulations

- - 
~:. ~~
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